skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Despite abundant empirical evidence, the details of coupled deformation and mass transfer processes within a framework of the crustal architecture of ancient orogens remains enigmatic. Geophysical imaging of the Larder Lake-Cadillac deformation zone, a well-endowed crustal-scale fault system in the Superior Province of the Canadian Shield, characterises the crustal architecture and fault geometry of the system through the lower crust. By comparing the geophysically determined structure of the Larder Lake-Cadillac deformation zone to stress changes induced by Archean (peak orogeny) rupture of the fault system, we show domains of earthquake-triggered deformation coincide with the geophysically imaged low resistivity zones. These low resistivity zones likely formed due to mineral bearing fluid migration from underlying fertile source zones to downstream (shallower) crustal reservoirs and, ultimately, near surface traps. The multi-disciplinary approach identifies the syntectonic mass-transfer processes and fluid pathways, providing an interpretive framework for unraveling the geophysical manifestation of the deformation controlled processes responsible for upflow of metalliferous fluids that may result in ore deposit formation in collisional orogens. 
    more » « less
    Free, publicly-accessible full text available May 2, 2026
  3. Abstract. Societal adaptation to rising sea levels requires robust projections of the Antarctic Ice Sheet’s retreat, particularly due to ocean-driven basal melting of its fringing ice shelves. Recent advances in ocean models that simulate ice-shelf melting offer an opportunity to reduce uncertainties in ice–ocean interactions. Here, we compare several community-contributed, circum-Antarctic ocean simulations to highlight inter-model differences, evaluate agreement with satellite-derived melt rates, and examine underlying physical processes. All but one simulation use a melting formulation depending on both thermal driving (T ⋆) and friction velocity (u⋆), which together represent the thermal and ocean current forcings at the ice–ocean interface. Simulated melt rates range from 650 to 1277 Gt year−1 (m = 0.45 − 0.91 m year−1), driven by variations in model resolution, parameterisations, and sub-ice shelf circulation. Freeze-to-melt ratios span 0.30 to 30.12 %, indicating large differences in how refreezing is represented. The multi-model mean (MMM) produces an averaged melt rate of 0.60 m year−1 from a net mass loss of 842.99 Gt year−1 (876.03 Gt year−1 melting and 33.05 Gt year−1 refreezing), yielding a freeze-to-melt ratio of 3.92 %. We define a thermo-kinematic melt sensitivity, ζ = m/(T ⋆ u⋆) = 4.82 × 10−5 °C−1 for the MMM, with individual models spanning 2.85 × 10−5 to 19.4 × 10−5 °C−1. Higher melt rates typically occur near grounding zones where both T ⋆ and u⋆ exert roughly equal influence. Because friction velocity is critical for turbulent heat exchange, ice-shelf melting must be characterised by both ocean energetics and thermal forcing. Further work to standardise model setups and evaluation of results against in situ observations and satellite data will be essential for increasing model accuracy, reducing uncertainties, to improve our understanding of ice-shelf–ocean interactions and refine sea-level rise predictions. 
    more » « less
    Free, publicly-accessible full text available February 18, 2026
  4. The Coal-To-Liquid (CTL) synthetic aviation fuel, Iso-Paraffinic Kerosene (IPK), was studied for ignition delay, combustion delay, pressure trace, pressure rise rate, apparent heat release rate in an experimental single cylinder indirect injection (IDI) compression ignition engine and a constant volume combustion chamber (CVCC). Autoignition characteristics for neat IPK, neat Ultra-Low Sulfur Diesel (ULSD), and a blend of 50%IPK and 50% ULSD were determined in the CVCC and the effects of the autoignition quality of each fuel were determined also in an IDI engine. ULSD was found to have a Derived Cetane Number (DCN) of 47 for the batch used in this experimentation. IPK was found to have a DCN of 25.9 indicating that is has a lower affinity for autoignition, and the blend fell between the two at 37.5. Additionally, it was found that the ignition delay for IPK in the CVCC was 5.3 ms and ULSD was 3.56 ms. This increase in ignition delay allowed the accumulation of fuel in the combustion chamber when running with IPK that resulted in detonation of the premixed air and fuel found to cause high levels of Ringing Intensity (RI) when running neat IPK indicated by the 60% increase in Peak Pressure Rise Rate (PPRR) when compared to ULSD at the same load. An emissions analysis was conducted at 7 bar Indicated Mean Effective Pressure (IMEP) for ULSD and the blend of 50% ULSD and 50% IPK. With the addition of 50% IPK by mass, there was found to be a reduction in the NOx, CO2, with a slight increase in the CO in g/kWh. 
    more » « less
  5. The concept of resilience is surging in popularity, but relevant discussions are often disconnected from one field to another. To prompt integration of disparate conversations on resilience, we examine the concept’s origins etymologically, genealogically, and by analyzing the interdependencies of drinking water and public health systems in six academic disciplines and practice-oriented fields. These disciplines are engineering, social work, urban studies, political science, communication, and public health. While the disciplinary resilience literatures are relatively stove-piped from one another’s contexts, they all theorize resilience at multiple levels of analysis. They also engage a range of understandings of how to build resilience in complex systems. This paper brings several conversations together, addressing gaps and resonances in disciplinary conceptualizations of resilience with nine propositions to cultivate interdisciplinary and transdisciplinary discussions and debates. We ground this creative inquiry in real-world examples of water system crises to highlight subthemes among the propositions and stimulate more diverse discussions moving forward. We examine dynamics of interfaces and interactions within and between systems through the Elk River Water chemical contamination in Charleston, West Virginia in 2014. We investigate tensions that arise in knowledge and practice through lead poisoning of public water systems in Washington, D.C. and Flint, MI. Finally, we consider how change and persistence shape learning through water infrastructure in Southern California. All together, these propositions offer a starting point and a provocation to strengthen theorizing around resilience for critical infrastructure systems. 
    more » « less
  6. The rate and extent of anthropogenic alteration of the global nitrogen cycle over the past four decades has been extensive, resulting in cascading negative impacts on riverine and coastal water quality. In this paper, we investigate the individual effects of a set of management, technology, and policy mechanisms that alter total reactive nitrogen (TN) flux through rivers, using a modified, spatially detailed SPARROW TN model, between 1980 and 2019 in the Northeast (NE) and Midwest (MW) of the United States. Using the recalibrated model, we simulate and validate a historical baseline, to which we compare a set of climate and non-climate single factor experiments (SFEs) in which individual factors are held at 1980s levels while all other factors change dynamically. We evaluate SFE performance in terms of differences in TN flux and willingness to pay. The largest effect on TN flux are related to reduction in cropland area and atmospheric nitrogen deposition. Multi-factor experiments (MFEs) suggest that increasingly efficient corn cultivars had a larger influence than increasing fertilizer application rate, while population growth has a larger influence than wastewater treatment. Extreme climate SFEs suggest that persistent wet conditions increase TN flux throughout the study region. Meanwhile, persistent hot years result in reduced TN flux. The persistent dry climate SFE leads to increased TN flux in the NE and reduced TN flux in the MW. We find that the potential for TN removal through aquatic decay is greatest in MW, due to the role of long travel time of rivers draining into the Lower Mississippi River. This paper sheds light on how a geographically and climatologically diverse region would respond to a representative selection of management options. 
    more » « less
  7. ASME (Ed.)
    Investigations were conducted using mass blends of Iso-Paraffinic Kerosene (IPK) and Fischer-Tropsch Synthetic Kerosene (S8) to produce a synthetic surrogate for aerospace F-24. Due to the fossil fuel origin of F-24, the introduction of a synthetic surrogate would create a sustainable aviation fuel (SAF) with sources obtained from within the United States. An analysis of ignition delay (ID), combustion delay (CD), derived cetane number (DCN), negative temperature coefficient (NTC) region, Low-Temperature Heat Release region (LTHR) and High-Temperature Heat Release (HTHR) was conducted using a PAC CID 510 Constant Volume Combustion Chamber (CVCC). The fuels examined in this study are neat IPK, neat S8, neat F-24, and by mass percentages, as follows: 75IPK 25S8, 52IPK 48S8, 51IPK 49S8, 50IPK 50S8 and 25IPK 75S8. The DCN values determined for IPK, S8, and F-24 were 26.92, 59.56 and 44.35 respectively. The influence of IPK present in the blends increases CD, thus reducing the DCN significantly. The fuel blend of 50IPK 50S8 was observed to be the closest match to F-24 when comparing DCN, ID and CD. The surrogate blends were determined to have a lower magnitude of peak pressure ringing compared to that of the neat S8 and F-24, this is due to the extended NTC region caused by the IPK present in the blend. During further refinement of the surrogate blend, the Apparent Heat Release Rate (AHRR) curve for the 51IPK 49S8 fuel blend was found to have the closest match to the AHRR of F24. The surrogate blend 50IPK 50S8 was shown to have the smallest percent difference and best match during the LTHR stage, compared to F-24, while 52IPK 48S8 had the smallest percent difference for the energy released during LTHR. The ID and CD of the 25/75% blends were too dissimilar from the F-24 target to be considered as a surrogate. A Noise Vibration Harshness (NVH) analysis was also conducted during the combustion of the three neat fuels in the CVCC. This analysis was conducted to relate the ID, CD, HTHR and ringing to the vibrations that occur during combustion. Neat S8 was observed to have the most vibrations occurring during the combustion process. Additionally, the HTHR was observed to have a distinct pattern for the three neat fuels and the combustion of these fuels was quieter overall. 
    more » « less